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Yhe formation of a cavity in water is a conceptual preliminary to the dissolution of a nonpolar solute. The process is of biophysical
impartance because of its assumed primitive relation to hydrophobic factors affecting biological structure and function. In this paper,
cavity formation by the isochoric deformation of a fluid specimen is investigated. Using both molecular and macroscopic descriptions
of this process. the volume occupied by the fluid is held constant while the spherical specimen is reversibly deformed in differential
steps unil it surrounds a spherical cavity. The work of cavity formation results from the integration of energy changes generated
directly from the forced. differential deformations of the equilibrium fluid structure; the heat of cavity formation is the integrated
result of energy changes that accompany the nonforced. differential adjustments n the distribution of matter which modulate the
average fluid structure during the process. This reversible isochoric deformation procedure for introducing the nonpolar system into
the polar fluid is compared with the more familiar method that uses a reversible coupling parameter. Simple calculations based on the
wochoric deformation method provide estimates of the free energy. internal energy. heat and entropy of cavity formation that agree

with values from the scaled particle melhnd\

~

1. Introduction : tures of hydrophobic processes are reflected in the
-~ §Iow solubility of nonpolar solutes in water {6-11].

One of the most interesting problems in bio- It has, nevertheless, remained a matter of con-

physical chemistry today concerns the origin and troversy how the relative insolubility of nonpolar
implications of the hydrophobic effect [1-3]. In molecules in water is correlated, for example, with
descriptive terms, this effect refers to the tendency free energy constraints on peptide chain folding in
for nonpolar groups to associate in water. Most of proteins or aggregation of lipid molecules in mem-
the biologically important issues were raised in branes 532137 P . - T
Kauzmann’s paper [4] and the period since its Of the concepts which have evolved regarding
publication has produced an increasing variety of hydrophobicity, we state three propositions which
methods and approaches directed at various fea- seem to have special significance. These are (i) the
tures of hydrophobicity 45]. An assumption in large unfavorable free energy of dissolving a non-
~much-of this work is that some fundamental fea- polar solute in water can be attributed to a large

entrupy decrease associated with rather special
structural changes within water [14-16), (ii) the
Correspondence (present) address: W.H. Bishop, U.S. Naval unfavorable free energy is not due to structural

Medical Research Unit No. 3, FPO New York, NY 09527-1600. changes but is directly dependent on the structure
USA. of water [17], and (iii) it may be useful to study
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198 W.H. Bishop /Cavity formation in hydrophobic effect

these processes in water from the general perspec-
tive of intermolecular force and energy as in other
physical systems [18]. The third statement is essen-
tially a recommendation regarding the other two.
In pursuing this recommendation here, we do not
suggest that it has not also been used in the
approaches to the problems referred to in (i) and
(ii). Further, we do not attempt to resolve the
points of view expressed in (i) and (i1); these have
been thoroughly investigated and defended by their
proponents. Instead, our purpose is to study the
energetic features of a particular process that is
important in hydrophobicity. The process is that
of creating a spherical cavity within a condensed
phase. Cavity formation is not the only compo-
nent of dissolving a nonpolar solute in water, but
it is a highly significant part in which important
features of water as a solvent are found and is
therefore worthy of special attention [19-22].
Several computational approaches to the thermo-
dynamic quantities in this process have becn given;
we mention here (a) the use of scaled particle
theory [19,20,23-25]. (b} the introduction of the
cavity by reversible coupling of an appropriate
hard sphere [26,27] and (c) surface free energy
relations [28~30). In the present paper we will use,
and assume as well established, these earlier theo-
retical estimates of positive free energy and nega-
tive entropy of cavity formation in water; it is not
our aim here to present alternative calculations.
Our objective is instead to develop a description
of the energetics of cavity formation through which
the physical quantities involved in statements (i)
and (ii) above may be explored. This is done in
two stages. First, to introduce in preliminary form
some concepts relevant to reversible processes, we
discuss briefly the procedure of placing a nonpolar
solute in water. Next, employing these general
concepts, the creation of a cavity by the procedure
of isochoric deformation is investigated, using both
molecular and macroscopic approaches.

The approaches to solvent behavior used here
are stated in fairly general terms; the specific
systems of biophysical interest are of course aque-
ous. As is well known, the physical chemistry of
these systems is very complex, and we offer here
only a brief summary [31]. The properties of liquid
water and aqueous systems containing nonpolar

groups are primarily determined by the strong,
highly directional hydrogen bonds among water
molecules. Each molecule interacts through hydro-
gen bonding with up to four other molecules that
tend to be tetrahedrally distributed. A dominant
feature is for the water molecules to seck the
maximum number of such bonds, even if some
bonds are not perfectly formed, 1.e., ‘strained.’
The tendency to maximize hydrogen bonding
places enhanced motional constraints on mole-
cules in solvent layers directly adjacent to a non-
polar solute and is related to the strongly negative
entropy of solution. The energy of such a system
is not given rigorously by summing interaction
energies over pairs of molecules; i.e., the hydrogen
bonding interactions are cooperative [32]. Thus,
the assumption of pairwise additivity of inter-
molecular energies, which is made in most discus-
sions (including the present one), can be only an
approximation. We mention, however, that meth-
ods have been given for obtaining ‘effective’ pair
potentials that incorporate cooperative many-body
effects [33.34).

2. The reversible coupling method

As a preliminary to our later discussion. we
examine here a basic and familiar hydrophobic
process, the introduction of a small nonpolar so-
lute, such as argon, into liquid water. The method
developed here is used because it introduces and
illustrates certain points which are important for
the later presentation. The issues raised in state-
ments (i) and (ii) above are fundamentally of an
energetic nature. We therefore focus on the energy
terms generated when a single nonpolar solute is
placed at a fixed. central location in a macro-
scopic system of N water molecules in constant
volume v at constant temperature 7. In this sec-
tion, subscript k& denotes the solute molecule fixed
at the coordinate origin; subscript j refers to any
solvent molecule with position r, and Euler orien-

tation w (8.¢,.¥). The configuration X (r.w,)
combines the spatial and orientational coordinates

[35]). With k& fixed at the origin, the intermolecular
potential energy shared between k and any j
depends on X, and is expressed as u, (X)) the

= opueial
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potential between two solvent molecules, j and
j’, is dependent on their configurations and is
given by u, (X, X.). The contributions to the
internal energy of the system made by intramolec-
ular vibrations, and by translational and rota-
tional kinetic energy, are considered to remain
constant throughout the constant-temperature
procedure. For simplicity, we assume pairwise ad-
ditivity of intermolecular potentials. The method
given by Kirkwood [36)., employing a coupling
parameter x, is used to introduce the solute. The
interaction between k and all molecules j is in-
creased in reversible, differential steps dx. be-
tween x = 0 and x = 1. At the coupling level x the
intermolecular potential between k and any j is
xu, (X)), the potential between any two solvent
molecules, u,(X,X.), does not vary with «.
However, the potentials of mean force w, X x)
and w .(X,X ), which determine the prob-
abilities of occurrence of specific configurations in
the system, are functions of both x and configura-
tion. Thus, the energy of the system for a specified
«. exclusive of the vibrational and kinetic energies
discussed above, with 8 =1/kT (kT: Boltzmann’s
constant times temperature), is given by [37]

N2
2(8'7721,')2

N

8ni

w, b
E(x) = /lxu‘/e‘ﬂ“"r“’dX/+

Ull‘ h)/'l‘
X[V [ e dx ax, (1)
With obvious notation, eq. 1 may be expressed as
E(x)=E, (x)+E, (x) (2)

Formally, each term on the right-hand side of eq.
2 has the form {38]

E=YPE, (3)

where P, describes the probability distribution in
the system, over the manifold of all possible pair-
configuration energies E;. Thus, E, corresponds to
xu,, in the first term of eq. 1 and to u, . in the
second term. Then, since both terms on the right-
hand side of eq. 2 are functions of the coupling
level, they may each separately be expressed in
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differential form according to
dE= (ZP, aE,/ax) dx + (ZE, BP,/ax) dc  (4)

As discussed elsewhere [38], the first term on the
right-hand side of eq. 4 corresponds formally to
work; infinitesimal change in energies with con-
stant probabilities produces differential work
(—dW). The second term on the right-hand side
of eq. 4 corresponds formally to heat; infinitesi-
mal change in probabilities with constant energies
produces differential heat (dQ). We apply eq. 4 to
each of the terms on the right-hand side of eq. 1
and note that

d(xuy,)
dx

- o 2y 5
= u,, and 2 _ (5)

Collecting work and heat terms, we have

N w,
—dw={8'n'zvf u,Ue"B"“""’d/\’/} dx (6)
N v a - Bw x
dQ={8n2pf xu,(ja(e Brea ’)Xm}dx
‘ N2 W et
+.l 2(87rzu)2'[ '[ “t
a - Bw, k)
xx(e ) d X dX,) dk (7)

Integration of eq. 6 over « yields the usual defini-
tion for the work of coupling [36]. This approach
to eqs. 6 and 7 has been used in order to bring out
certain general points regarding the coupling pro-
cedure. First, we see that the work in eq. 6 derives
solely from a summation of properly weighted
solute-solvent interactions, and that the heat in eq.
7 is a combination of contributions from both
solute-solvent and solvent-solvent interactions.
Second, we note that this coupling procedure is
one example of a hypothetical, reversible mecha-
nism that can use an infinitesimal change in free
energy of a system to perform a numerically equal
amount of work on the surroundings of that sys-
tem. Finally, we point out that for a step d«x 10 be
reversible, both energy transactions, the work in
eq. 6 and the heat in eq. 7, are required; i.e., each
isothermal, reversible step d«x generates two kinds
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of energy changes that are conceptually separable
and have formally distinguishable origins. All of
these general considerations appear in another
method, described in the following sections, for
introducing the nonpolar system. Some of these
points can be simplified by division of the interac-
tion between the nonpolar solute and polar solvent
into repulsive (hard sphere) and attractive (soft
central) parts; the simplification occurs when the
attractive part is omitted. Indeed, it has been
shown that the coupling of a hard sphere is equiv-
alent to the formation of a cavity of an ap-
propriate size in the solvent [26.27]. Because of its
conceptual simplicity, the process of cavity forma-
tion has been considered to be a primitive model
for hydrophobic phenomena [20,27]). We describe
in the following sections an additional method for
introducing the cavity.

3. Cavity formation by isochoric deformation

Our main objective in this paper is to examine
the energy changes associated with cavity forma-
tion from the perspective of the Gibbs equation.
which is the general expression for the differential
change in internal energy in any thermodynamic
system [39,40].

dE= —-dW-pdv+TdS+pudn+y de (8)

The notation here is standard and. in the present
and subsequent sections, the terms on the right-
hand side are, in order, (1) non-pv mechanical
work, (2) pv mechanical work, (3) reversible heat
dQ, (4) chemical work and (5) electrical work. The
systems of interest here are closed, electrically
neutral and have constant volume, so terms 2, 4
and 5 do not contribute.

dE=-dW+TdS 9

Depending on the context, —dW and T dS can
assume various forms. In the present and follow-
ing sections we are particularly interested in the
case where —dW has its primitive physical mean-
ing and, for a total system, is given by summation
of the force-displacement terms from each part of
the system, i.e, where the external force f dis-
places the internal part i through the vector dis-

tance ds,, and [39.40]
—dw =3 f-ds, (10)

Preliminarily to describing the procedure in detail,
we need to mention some simple points regarding
cavity formation in general. First, it is an experi-
mental observation that stable cavities, even of
molecular size, do not form spontaneously in
water. Thus, work (free energy increase) must be
done on a macroscopic specimen of water in order
to create a cavity of some radius A. Next we note
that a cavity of radius A, having been formed by
intervention of an external, work-performing
agency, has no tendency to increase spontaneously
its radius. Thus, in summary, the free energy
required to introduce a cavity is an increasing
function of its radius A. Therefore, since there is a
functional quantity W(A), there are also, by ther-
modynamic manipulation, the functions E(\) and
Q(A) for energy and heat of cavity formation,
respectively.

We consider a spherical fluid specimen, whose
volume v has a fixed value, with constant mass M
and temperature 7. Any point within v is associ-
ated with a radius vector r, with origin at the
center of the system. In our molecular description
(section 4.1), the mass M is divided among N
identical fluid molecules with explicit translational
and rotational degrees of freedom and mutual
distance-orientation dependent interactions. In our
macroscopic description (section 4.2), molecular
properties are not spec.fied and the system is
assumed to consist of a continuous spatial distri-
bution of matter. A spherical cavity is introduced
into the center of the specimen by a reversible
process done in a particular way. Initially, the
volume v has the outer radius r, = (3v/47)/>
and surrounds a central spherical cavity of radius
A =0. The radius of the cavity is changed, by
reversible increments dA, from A=0 to A=1
while the outer radius r,(A) varies from (3v/47)'/*
to (77 + 3v/47)'/ . The full process is carried out
in differential steps in a manner such that, at any
intermediate stage, the constant volume v is con-
fined between spherical surfaces with radii A and
(X +3v/47)'). During the process, only the
matter and space between the spherical surfaces
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constitute the system proper. That is, for any
value of A, the extensive thermodynamic proper-
ties of the fluid specimen are obtained by integra-
tion only within the volume v contained between
the spherical surfaces defined by A and ry(A). The
surfaces at A and ry(A) are variable external
constraints on the closed, constant T, v system
and the process is thus the reversible deformation
of the system from the initial to the final con-
straints. Although for any A the volume occupied
by the cavity is not part of the system, forces
between fluid particles must be considered as being
transmitted undisturbed across this volume. This
isochoric deformation requires for the increase
dX. when the cavity radius is A, that the fluid
matter located at any point with radius vector r be
displaced a vector distance d/, where

dI =X dXi/r? (11)

and i 1s a unit vector, located at r. that is directed
outward along r.

Forces originating external to the system are
required to act at all points within the system in
order to produce the prescribed deformations. It is
not necessary for the present purpose to specify
the properties of this force ficld imposed from the
exterior, other than to describe its effects and the
strength, duration and direction of application.
The field acts simultaneously at all points in the
system along radial directions and, at any point,
has only the strength and acts only over the dis-
tance required to produce, in a reversible manner,
the above-prescribed differential deformation d/.
Finally, the external force field acts on the system
only during the actual physical displacements in-
volved in each deformation step. That is, with the
constant T, v system at equilibrium surrounding a
cavity of some radius A, the force field is applied
in the prescribed fashion to produce the differen-
tial displacement d/ required at each point; as a
result of this differential deformation of the entire
specimen, the external constraints are moved from
A and 7(A) to A+ dA and 7, (A) + A2 dA/rd(M).
The application of the field is then stopped and,
with the external constraints held stationary in the
minutely displaced condition, the interior of the
system (still at constant T') adjusts passively to
maintain equilibrium with the new values of the

external constraints. These procedures are then
repeated for each succeeding step dA; the two
parts of each step are needed in order that the full
process, [dA, be thermodynamically reversible.
For a step dA, the reversible work —dW is gener-
ated in the first part (deformation) and the re-
versible heat dQ arises in the next part (adjust-
ment). The two parts together yield the internal
energy change d £ in the constant T, v system for
the reversible step dA. We note here as an essen-
tial point of comparison between the coupling
parameter method in section 2 and the isochoric
deformation in this section that both isothermal
reversible processes generate distinguishable work
and heat parts. As discussed earlier, because the
free energy of cavity formation is positive, the
forces operating within the equilibrium system
will, on average, act to oppose the spontaneous
appearance of a stable cavity. The function of the
external force field described above is to provide
an external agency which. operating only during
the deformation part of each step dA, will reversi-
bly override these average internal forces and re-
sult in the creation of a cavity.

4. Molecular and macroscopic features of cavity
formation

In this section, we use two alternative ap-
proaches to describe the energetic features of cav-
ity formation by isochoric deformation, (1) a stat-
istical-molecular method (section 4.1) and (2) a
macroscopic-phenomenological method (section
4.2).

4.1. Molecular aspects

In this subsection we are interested generally in
polar liquids with definable molecular structures
and interactions, particularly water. The system
consists of N identical, fully coupled molecules in
the spherical volume v at temperature 7. The
molecules are assumed to interact in pairwise ad-
ditive fashion through hard exchange repulsion,
relatively soft dispersion attraction and powerful
orientation-dependent forces. They have effective
radius r,. For descriptive purposes we use a
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Cartesian coordinate frame with origin at the
center of v. For the fluid to surround a
molecular-sized cavity of final radius A =1,
molecular centers must be excluded from a central
spherical region with radius = = 2r, {27), s0 in the
initial state all molecular centers are confined
within 7= (3v/47)'/? and in the final state the
molecular centers are confined between A =2r,
and r,=(8r) + 3v/47)'/>,

The configuration of a molccule 7 is denoted by
X, and consists of the radius vector r, from the
origin to the molecular center and the Euler angles
8., ¢, ¥ defining the orientation of / in space
[35). The Euler angles w,(4,.¢4,.¥,) are measured
relative to local orthogonal axes which, at any
spatial location for the center of i, have X, ¥, Z
axes parallel, respectively, to X, Y, Z axes fixed at
the origin. For convenience of notation in the
present section, we denote a representative pair of
solvent molecules by i and ; (rather than ; and
j' as in section 2). The intermolecular potential
energy shared between i and j. u, (X.X)). is a
function of the two-molecule configuration X, X,
The probability of occurrence of the pair config-
uration X, X, in the system with cavity radius A is
a function of the potential of mean force between
i and j, which depends on X,. X, as well as on A:
this potential is denoted by w, (A) [36.37.41].

The cavity is introduced at the center of the
specimen according to the procedures given in the
preceding section. With the system at equilibrium
and A of any value between zero and 7, the force
field is applied that is required to displace in
isochoric fashion the molecular centers of all pairs
i and j from the state where they are confined
between A and r;(A) to the state where they are
confined between A +dA and ry(A)+ AN dA/r?
(A). The essential features of this force field, which
acts on the system from the exterior, were dis-
cussed previously. This differential deformation
requires that the centers of any pair i and J,
located with equilibrium pair probability in any
configuration X, X, within v, be simultaneously
displaced in a radially outward direction by df,
and d/,.

dl, =N dXi/r} (12)
dl, =N dAi /r? (13)

where {, and i, are unit vectors pointing radially
outward from X, and X, respectively. During the
deformation part of dA, the action of the external
force field thus ensures well-defined functional
relations between (a) the cavity radius A and
cavity displacement dA and (b) the physical dis-
placements of the molecular centers of any pair i
with specified X,.X,. These displacements of
molecular centers are done in a manner that pre-
serves the individual orientations of i and ; in
Cartesian space: however, their orientation rela-
tive to one another will in general change. That is,
differential displacement of the molecular centers
of i and j along their outward radial directions,
while maintaining constant orientation of each
molecule in the space of the Cartesian frame, will
cause differential changes both in relative orienta-
tion and in relative separation of molecular centers.
The reversible work. performed during this defor-
mation part of the step dA. is generated because
these changes in relative configuration are done
against the forces and torques operating between i
and j. We note then that the potential energy of
the pair ij changes during the deformation part of
a step dA from u, (r.w,;: r.w) to u, (r,+dl, w:r,
+d/,.w,) with d{, and d/, given by egs. 12 and 13.
The application of the field is then stopped and
the reversible heat is obtained when, in the adjust-
ment part of the step dA, the distribution of
molecules throughout the specimen adjusts pas-
sively to the new values of the constraints.

The discussion above focused on a single pair i
in a single pair configuration X,. X, The proper-
ties of the system of N molecules are determined
by N(N —1)/2 pairs, with each pair distributed
statistically over all pair configurations consistent
with the external constraints. We develop here the
statistical expressions for the work and heat con-
tributions to internal energy change. As in section
2, intramolecular vibrational energies and average
kinetic energies of molecular translation and rota-
tion remain constant; changes in internal energy
are then equivalent to changes in average potential
energy E in the system. For any cavity radius A
this will be [37]

N2 WU pw Dy
E(M) = —— u, (X.X,)
2(87rzv)2/ '[ ! '

xe BN dX dX, (14)
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The term multiplying the integral arises from the
value at large N of N(N —1)/2 (the number of
molecular pairs) and the normalizing factors for
the differentials d X, and dX,. The coordinate
integrations are over the rotational space w(6.¢.¥)
and Cartesian v, of the molecules. The volume
symbol v, denotes that the possible positions of
molecular centers r, while always within a volume
of magnitude v, must be integrated between the
radial limits A and (X’ + 3v/47)'/? for a specified
A. The Boltzmann factor containing the potential
of mean force determines the probability of the
configuration X,, X, with potential energy
u (X,.X).

In principle, eq. 14 could be evaluated for any
A. With regard to this equation, a useful property
of the isochoric deformation is that any selected
pair configuration in the specimen with cavity
radius A is derived uniquely from a specific pair
configuration in the specimen with cavity radius
zero. That is, let (£(0).w,;r,(0).«,) be any specific
configuration contributing the pair energy u,,
(r,(0).0,:7(0).0,) to the integration for E(0). As
the cavity radius increases from zero to A, we may
regard the isochoric deformation as acting to
transform the locations of i and j from r(0) and
r(0) to r(A) and r(XA) where

(0))i(r) (15)
R0 = (N +100)) i) (16)

r()\)—()\‘

and #(r,) and i(r,) are unit vectors at the origin
that point in lhe directions of #(0) and r(0),
respectively. We thus have the transformauons

(r;(O).w,;r;(O),w,) = (r(M).w:ir(N)e) (17a)

u, (£(0),0,:5(0).w,) »u, (r(A).w:r(A)o,)
(17b)

E(0) » E(A) (17¢)

As can be verified from eqs. 15 and 16, an im-
portant property of this transformation is that

dr(A)/dA = (A/r(A)), (18)

wh_ich gives the displacements in egs. 12 and 13.
This one-to-one correspondence between any

specific u,, contributing to £(0) and a unique u,,
contributing to £(A) means (a) all possible pair
configurations are accounted for in the integra-
tions for both E(0) and E(A) and (b) all pair
configuration energies u, contributing to any
E(A) are functions of A. The latter point implies
that eq. 14 may, similar to the case in section 2, be
expressed formally as a probability-weighted ( P)
sum over all pair energies ( E,); we note that the i
subscript, in this context, is an index of summa-
tion for pair energies and pair probabilities in [38]

E(A)=YP(N)E/(N) (19)

and the work —dW and heat dQ may be obtained
from

_ (zp, aE,/aA) dA+ ():15, 3P,/8\ | X
' ' (20)

In summary, the deformation procedure may
be regarded as a reversible displacement of all
pairs of molecules from the initial manifold of
configurations (belonging to the specimen of cav-
ity radius zero) to the final manifold of ij con-
figurations (belonging to the specimen of cavity
radius A); reversibility is achieved by providing a
‘pause’ after each differential displacement of pair
configurations, in order to permit a differential
adjustment in pair configuration probabilities.
These points are pursued below, where the work is
expressed in the form given in eq. 10.

An important application of eq. 14 would be to
derive the quantity AE = E(A,) — E(A,) when A,
=17 and A, = 0. Of more general interest here is
the case where the state described by E(A,) is, by
process of isochoric deformation. only infinitesi-
mally removed from the state described by E(A ).
Then with A, = A, + dA,

E(A,+d\) - E(A\)=dE=-dW+dg (21)

Like the terms i eq. 1, eq. 14 is the summation
over the probability-weighted potential energy
manifold of a representative pair. The infinitesi-
mal deformation procedure, that forces the speci-
men from E(XA,) to E(A,+dA), will generate
differential changes in both (1) the possible poten-
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tial energies of the representative pair and (2) the
probabilities of occurrence of specified configura-
tions of the pair. Thus,

dE=-—— P (bu,, e BeaM A X d X,
287 %)’ f f !
NZ
Yoo
2(87%)
x/w,m/u, 'x“” 8(6‘ pu,,M)) dX/ dX, (22)
and the expression would be evaluated at A =A,.

The differential quantities 8(e #*~'*') and 8u,,
are defined as follows:

S(e PNy = {3(e M) /0N ] dA (23)
{au,, ar

| . oA
y du, 3 Bu, de |
ar, OA ' dw, OA |

ou,, Juw,

dw, oA

Su, (r.w: r.w)=

(24)

As discussed above. the displacements in eqs. 12
and 13 are not accompanied by changes in the
individual orientations of ¢ and j:

Ja, o 25)
20 and — =
ax 0 o ‘
The gradients of the intermolecular potentials.
along the radial directions. give the magnitudes of
the intermolecular force in these directions when
molecules i and j are in the configuration
(r.wi.r.w).

ou,, du,,
or, - ’f;, ar = —f:/‘ (26)

t

where f, is the magnitude of the force from
molecule j, acting at the center of /, in the direc-
tion of r; f, has the complementary meaning for
the force from i acting at the center of j. An
individual force, e.g., /,,. will be positive or nega-
tive depending on whether it is directed radially
outward or inward, respectively; this direction will,
of course, depend on the specific X, X, The
changes in radial coordinates are given by the

requirements of the isochoric deformation, egs. 12
and 13.

ar, _dl, 2 a’/-dl_
ﬁ_ﬁ_()\/n) wnd = = —A-()‘/’)

(27)

We see for dE in eq. 22 that the first term is
the summation of contributions from changes in
pair energies under constant probabilities and gives
the reversible work; the second term is the sum-
mation of contributions from changes in probabil-
ities under constant pair energies and gives the
reversible heat.

Summarizing these relations,

—aw= 2(81’ ’)[f S IALYAS

+f,j()\/rl):]e AraMdx dx l dA

'

(28)
e L [ 0 x)
| 2(87 %)’ ’ !
xj—(e'”“"‘*’)dX dx‘ dA (29)
oA / /

The quantities d X, d X, in these equations are
simply the usual differential elements of config-
uration which must be integrated over all config-
urations consistent with a specified A; these
d X, d X,, which are essentially indices of summa-
tion, should not be confused with the infinitesimal
changes in molecular coordinates, eq. 27. gener-
ated during the deformation part of each dA step.
We see then that A E above can, in principle, be
obtained by two methods: (1) eq. 14 can be
evaluated for A, and A. separately and the dif-
ference calculated or (2) eqgs. 28 and 29 can each
be integrated over A between A, and A, and the
results added to give AE= —AW + AQ. In the
latter case, —A4W and AQ are each obtained as
the limit of the sum of infinitesimal isothermal
contributions, generated while the isochoric defor-
mation procedure is performed reversibly.
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4.2. Macroscopic aspects

We derive in this subsection some energetic
implications of the isochoric deformation when
the fluid specimen surrounding a cavity of radius
A is regarded as a continuous, macroscopic distri-
bution of matter. Our objective is 1o present briefly
certain phenomenological points that are relevant
to the molecular discussion above. We are again
interested in the fluid of total mass M. constant
temperature 7, confined in the constant volume ¢
between the spherical surfaces with radii A and
(X' + 3v/47)!/%; when a specific value of A is of
interest, this constant volume will again be de-
noted v,. A sphenical polar coordinate system is
convenient in this case and the fluid matter located
at a point with radius vector r within v, then has
specified (7.8.¢). A volume element within ¢, is
dry=rlsin8drdf deo.

We recall that the internal energy of this sys-
tem, E(A). can be changed by application of an
external force field from E(XA)) to E(A,), in a
large number of successive, reversible, infinitesi-
mal steps. As before, each reversible step consists
of two parts, (1) a deformation part in which the
matter at all points, in every volume element dv,,
1s forced radially outward, resulting in a displace-
ment of the matter from any r to r+ A dA/r?
and (2) an adjustment part in which passive re-
distribution of the fluid among the volume ele-
ments will maintain equilibrium against the
minutely changed external constraints. In order to
examine the differential change dE = E(A + d))
— E(A) from the macroscopic perspective, we
focus on the internal energy associated with a
single dv,. Due to the nature of the isochoric
deformation procedure, an individual volume ele-
ment de, may be regarded as maintaining its
magnitude throughout both parts of a differential
step dA. That is, considenng any particular dv,.
the geometric effect of the deformation part is to
compress the element minutely along the radial
direction and to expand it minutely around the
tangential directions, while the matter in dv, and
the magnitude of dv, are each conserved; thus,
the local density (mass per unit volume) in dv, as
well as the magnitude of dv, remain constant
during the deformation part of dA. However, dur-

ing the adjustment part of dA, while the redistri-
bution of fluid causes no change in the magnitude
of any duv,, the local density within any dv, may
change. We thus find as an essential phenomeno-
logical point relevant to both molecular and mac-
roscopic methods that, not only is the overall
procedure isochoric, it is also locally isopycnic
during the deformation part of any dA. The inter-
nal energy of the fluid [42] within any dv, sur-
rounding a location r is u,(A)D,(A) dv,, where
u,(A) and D,(X) are, respectively, the internal
energy per unit of mass and the local density
(mass per unit volume) at the location r when the
cavity radius is A.

The internal energy of the specimen is then {42]

E(N) =/"‘u,(>\)o,(:\) de, (30)
The reversible isochoric change from A to A + dA
produces the energy change dE=E(A+dA)—
E(A).

d5=/"‘su,()\)o,()\) de,

+/"‘u,(x)ao,(x) de, (31)
8u,(A) = (3u,(A)/3)) dA (32)
8D,(A) = (3D,(A)/3)) dA (33)

The quantity 8u,(A)D.(A)dv, is the work per-
formed, under isopycnic conditions, by the exter-
nal field on the fluid in dv, during the deforma-
tion part of dA; u,(A)8D,(A)dv, is the energy
change within dv, due to the change in local
density during the adjustment part, and represents
the heat contribution from dv, in the step dA. We
define

(9u, (A)/3N) dA = (£ (A) dlL(N)/dN) A (34)

where £ (A) is the total force exerted by the exter-
nal field on all the matter in dv,, divided by the
total mass in dv,; it is the external force. per unit
of mass, that is required to produce, in a reversible
manner, the isopycnic displacement of the fluid in
dv, at r, when the cavity radius is A. From eq. 11,
d/ (A) is the prescribed displacement of the fluid
located at r when the cavity has radius A and

dl,(X)/dh = (A/r) (35)

ek
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From the foregoing discussion, the macroscopic
counterparts of egs. 28 and 29 are

—aw={ [“ (VA D(A) dey | 4k (36)

do = {/"*u,(x) aD,(1)/3A d“} dA (37)

S. Work and heat of cavity formation in water

We examine here some quantitative implica-
tions of section 4. We restate the work and heat
components in eq. 22 in the following forms.

—dW = "—E"
2(87°r)”
(38)
40 = K [ [ = e, )
2(87r)
xe AN gx dX, ()

Where 8u,, is defined by eq. 24 and 25, and
dw, (A)is given by

8w, (A) = (3w, (X)/3X) dA (40)

The probability distribution factors are identical
in eqs. 38 and 39: dunng any dA. the relative
contributions from a specific configuration ( X, X,)
to the work and heat, respectively. are then de-
termined by the signs and magnitudes of the fac-
tors in brackets. While we indicate here these
relations between work and heat during a small
change in size of the cavity, we shall not attempt
a rigorous integration over A of egs. 38 and 39.
We will instead assume greatly simplified ap-
proximations to these expressions in order to de-
scribe some of the contributing effects. These ap-
proximations are as follows:

(1) rather than a summation of many infinitesi-
mal steps (with each step having deformation and
adjustments parts), the cavity of radius 7 will be
formed in one finite step consisting of (a) one

deformation of an assumed initial structure in
order to open the cavity, followed by (b) one
adjustment of an assumed final structure around
the cavity; thus, the work part emphasizes the
deformation of the bulk liquid structure and the
heat part stresses the structural adjustment to
accommodate the cavity.

(2) Simple molecular distributions will be as-
sumed to represent essential structural features of
the initial [43] and final [24.44] states; thus, the
relevant initial and final distribution functions in
eqs. 38 and 39, respectively, are not explicitly
given, but are assumed to produce pre-selected
structures characteristic of water near 4°C (277
K).

(3) Only the energy changes among nearest-
neighbor molecules in the first and second shells
surrounding the cavity are included: we thus as-
sume in the one-step integrations of eqs. 38 and 39
that 8u,, and dw,, vanish except in the immediate
vicinity of the cavity and are negligible between
non-nearest neighbors.

(4) Only dipolar electrostatic energies are con-
sidered.

(5) 8w,,(X) will be approximated by an expres-
sion {45] derived from application of liquid-state
theory to interactions of polar molecules in a
dielectric medium.

Hydrogen bonding among tetrahedrally distrib-
uted nearest-neighbor molecules is assumed in both
the initial and final states, with center-to-center
distance 7= 2.76 A and dipole moment m = 2.18
Debyve; m consists of a permanent moment 1.88
Debye plus a 16% polarization component [43].
The dipolar energy u between two nearest-neigh-
bors in these structures is [43]

g J2mlcos y)u (41)

2
T

where (cos v),, is the average cosine of the angle
between the dipole vectors of the two molecules:
(cos y),, i1s 0.33 in the tetrahedral configuration
[43]). With these conventions and the procedures
given below, the calculations of 8u, —and
—Bu,, 8w, for the initial and final structures,
respectively, are straightforward: we shall omit the
numerical details and only briefly outline our
estimates of work and heat.
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5.1 Initial structure

We represent the initial structure of the bulk
fluid by a configuration of eight water molecules.
Two of the eight molecules. referred to as ‘central’.
are hydrogen-bonded to one another, and each of
these central molecules 1s hydrogen-bonded to
three ‘outer’ molecules. Geometrically, the molec-
ular centers in this structure correspond roughly
to atomic centers tn an ecthane molecule. The
midpoint of the bond between the central mole-
cules is chosen as the site of origin for the cavity:
the inital position vectors r(0) of the eight mole-
cules relative to this origin are determined by the
assumed geometry, and the initial electrostatic
energy of this structure is the sum of seven equal
pair energies of the form given by eq. 41. In the
one-step isochoric deformation, the introduction
of the cavity of radius 7 then displaces all eight
moiecules to deformed positions r(7) which are
computed from the inital positions r(0). using eqs.
15 and 16. The factor (cos v),, in eq. 41 is already
rotationally averaged. and we assume in our sim-
ple calculation that this factor, as well as m,
remains constant for each pair in the one-step
deformation. Equations of the form eq. 41, but
with intermolecular distances appropriate to the
displaced configuration, then give the electrostatic
pair energies in the deformed state. The inter-
molecular distances after displacement are readily
derived from the assumed initial geometry and the
results of the isochoric deformation. egs. 15 and
16. Six of the pair energies in the deformed state,
between the central and outer molecules, are equal:
the pair energy between the central molecules is
more positive because the displaced distance is
larger. We may then represent the change in total
dipola: energy by Au, and express this as

du, = Au(c.c) + 6Au(c.0) (42)

where Au(c.c) is the change in electrostatic inter-
action between the central molecules as a result of
the deformation, and Au(c,0) is the change be-
tween a central and an outer 1.10fecule. With this
expression we estimate Au, to be 4830 cal/mol;
this is thus our estimate of the work of cavity
formation in the present single-step approxima-
tion to the integration of eq. 38. For order of

magnitude, this figure may be compared to the
scaled particle method [20] where 5200 cal /mol is
required to make the cavity in water for solutes
the size of argon or nitrogen. In the present
method. we find that 40% of the 4.8 kcal derives
from the interaction between the central molecules
and 60% is from the six equivalent central-outer
interactions. We stress as a concluding point in
this subsection that the distribution of molecules
tesulting from the one-step deformation of the
assumed initial structure should not be identified
with the assumed fina! structure described below;
in principle, however, if the cavity were formed in
small steps, with reversible deformation-adjust-
ment in each step, the final deformed structure
and the final adjustment structure would be the
same.

5.2, Final structure

Hvdrogen-bonded networks of water mole-
cules. with intermolecular distance 7. form cages
around cavities in the liquid [24,44). In cold water
(T =277 K), a closed. nonplanar chain of eight
nearest water molecules forms the cage for a cav-
ity whose center is approximately a distance 7
from the center of each molecule {24.44]. In this
assumed final structure, the center of the cavity.
and the centers of any two cage waters which are
hydrogen-bonded to one another, then form an
equilateral triangle of side length . There are in
this cage structure eight equivalent pair energies.
with each assumed given by eq. 41; for our simple
calculation, the assumption will be that only these
eight pair energies contribute significantly to the
adjustment. Physically. this is equivalent to the
assumption that in the process of cavity forma-
tion. eight pair interactions are transferred from
the bulk-water environment to the cavity-cage en-
vironment. In addition to these pair energies and
the assumed final structure just described, we also
need a finite 4w, in order to approximate the
integration of eq. 39 in one finite step. For a polar
liquid. the effect on the w,, of two adjacent di-
poles i and j, caused by the electric moments in
the surrounding dielectric environment, was ex-
amined in a recent paper [45]). In the notation of
the present method and with some geometric terms




expressed numerically. the effect on the w,, of two
equal, parallel, end-to-end dipoles p, and p,.
caused by removing a molecular electric moment
from a molecule-sized volume Av of the medium
directly adjacent to i and . is given by [45]

3p° (3 cos’60° + l);

27 167°

dw,, = (-5.76) e (43)

where Ae =47/3 (1/2)". p=m cos (109°/2) and
P =m" cos54.5° = m(cos v),.. We note that
this equation has components which depend on
both the tetrahedral geometry (109°) of the water
cage and the equilateral geometry (60°) of the
cage-cavity structure. With the final structure given
above, u,, from eq. 41 and Aw , from eq. 43. we
estimate the heat of cavity formation ¢ at 277 K.

g = —8Bu Jdw, (44)

i

At 277 K. the heat is —4015 cal, mol and this is
our single-step approximation 1o the tntegration of
¢q. 39: the corresponding entropy of cavity forma-
tion 1s —14.5 e.u. These values may be compared
to the results of the scaled particle method for 298
K. where the figures are —4400 cal/mol and
=147 eu. [20]). Our estimate for the change in
internal energy (which would be the integrated
form of eq. 22) is 815 cal/mol. which mayv be
compared to 800 cal/mol derived from the scaled
particle method.

5.3, Dependence of work on cavuy radius

In order to examine the dependence of the
work —AW on cavity size, we compare some
formal and practical results between scaled par-
ticle theory and the present method. The funda-
mental expression for — AW in the scaled particle
method 1s [20]

—JW(T)=./:{p(i(7\)kT}4'rr>\:d)\ (45)

where p i1s the particle number density and G(X)
the conditional singlet probability function that a
particle is located between A and A + dA when the
cavity radius is A; kT has the usual meaning. The
following substitutions may be made in eq. 36:
D.(X) = (mass/particle)pG(r.\). d vy =
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&

r dr sin 8 d8 d¢. and we note that G(r.A) is the
conditional singlet probability function that a par-
ticle will be found at r when the cavity radius is
A. If the resulting equation for fixed A is in-
tegrated over angular vanables, then expressed as
an integral over A, the equation is then

—AW(1)
.=f"f"“’p(;(r.>\)f(r.>\)dr‘4w>€d>\ (46)
RN J

where f(r.A) now has the meaning of radial force
per particle required to produce isopycnic dis-
placement at r when the cavity radius is A, and it
will be recalled that the outer radius ry(A) = (X +
3r/47) Y. With the volume of the cavity r, =
473X and de_ = 47 A dA. egs. 45 and 46 may be
transformed

d( - AW /de = pG (AT (47)
d( W) /dr, :]""“p(;(r,)\)/(r.x) dr  (48)
A

The similarity of eqs. 47 and 48 is readily ap-
parent, particularly when it is noted that AT in eq.
47 is the work done per particle at the surface of
the cavity, and f(r,A)dr in eq. 48 is the work
done per particle in the spherical layer of thick-
ness dr at r. If 1t is supposed. as in the discussion
above. that most of the contributions to the in-
tegral in eq. 48 are concentrated in the nearest one
to two molecular layers around the cavity. then we
can use the approximate calculations to make
rough comparisons between the predictions of egs.
47 and 48. It was found above that, at 277 K. the
total work of cavity formation performed on the
eight molecules in the assumed initital structure
was 4830 cal/mol, or an average of 600 cal/mol
per molecule. For 277 K, the value of kT is 550
cal/mol. As a further comparison, we see in eq. 47
from scaled particle theory that the integral over
r. of pG(A) du., which gives the total number of
particles displaced in making the cavity, is
~AW(T)/kT. At 298 K, the quantity —AW(7)/
kT is 8.7 [20], in rough agreement with the as-
sumed initial and final structures in our simple
approximations for 277 K.
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6. Summary and conclusions

Our purposes here are (a) to compare the fea-
tures of the coupling parameter method for intro-
ducing the nonpolar group (section 2) with those
of the method of isochoric deformation (section
4.1) and (b) to compare the conclusions of the
molecular (section 4.1) and macroscopic (section
4.2) descriptions with one another and with the
energetic concerns of statements (i) and (1) in
section 1.

For convenience in the discussion, the coupling
procedure will be referred to as the ‘k-process.
and the deformation procedure as the ‘A-process.”
Both reversible procedures are. of course. strictly
hypothetical; « is an abstract, dimensionless
parameter varying between zero and unity, while
A. varying between zero and . is an actual physi-
cal dimension of the system, the cavity radius.
When & = 1, the fluid specimen surrounds a fixed
nonpolar solute: when X =7, the specimen sur-
rounds a fixed cavity. Reversibility is achieved in
cach elementary dx or dA by the provision of
distinct. infinitesimal work and heat components.
The constant-temperature surroundings provide
for the heat components, eq. 7 in the x-process
and eq. 29 in the A-process. There are interesting
contrasts between the work components in the
two cases. In the k-process, —dW in eq. 6 results
from an infinitesimal change in coupling under
conditions of fixed configuration, summed over all
configurations; in the A-process, —dW in eq. 28
results from an infinitesimal change in configura-
tion under conditions of fixed (full) coupling,
summed over all configurations. In each proce-
dure, the infinitesimal work is performed on the
system by an appropriate external agency that can
operate reversibly; i.e., the work performed on the
svstem by the hypothetical external agency exactly
equals the increase in free energy of the system.

We have investigated, by parallel development
of molecular and macroscopic approaches, how
the concepts of force, energy, structure and struct-
ural change enter the description of the work and
heat of cavity formation by isochoric deformation.
The unifying principle for the two methods is the
Gibbs relation, eq. 8. We note the similarity of
€gs. 14 and 30 and the descriptive correspondence

between eqs. 22 and 31, between eqs. 28 and 36
and between eqs. 29 and 37. For the work —dW,
we see that egs. 28 and 36 have the form given in
¢q. 10. The forces specified in the force-displace-
ment terms of eq. 28 are internal in the sense
discussed at the end of section 3: the negative sign
multiplying these molecular force displacements
indicates the energetic effect of the external force
field.

In section 4.1 the fluid ‘structure’ prevailing for
a value A is governed by ¢ #* '} and ‘structural
change’ in the fluid is determined by the behavior
of 3(e A*.1AY) /X, The work of cavity formation.
the integral over A of eq. 28. is derived cumula-
tively from minute, forced deformations of a stat-
istical structure, with the work of each deforma-
tion step dependent on the static. average struc-
ture present at that step. The heat. which is the
integrated form of eq. 29. is derived cumulatively
from minute, nonforced statistical adjustments,
against stationary constraints, as the isochoric sys-
tem of molecules accommodates the expanding
cavity. We see that the physical events in which
potential energy changes appear as work or heat,
respectively, are distinguishable and separable.

In general. constant p.T systems are preferred
in thermodynamic descriptions because they re-
flect the most common laboratory situations. Nev-
ertheless. constant ¢, T conditions have frequently
been used in theoretical discussions of condensed
macroscopic systems under moderate pressure be-
cause the pressure-dependent contributions to
changes in thermodynamic variables are small in
such systems [27.36,37.43.46). In section 5. v -
discussed some formal and numerical similarities
between the isochoric deformation (constant ¢.7)
and the scaled particle method (constant p.T).
Further. it has been shown by detailed calcula-
tions in the scaled particle approach [20] that the
pressure-dependent term contributes a negligible
quantity to the free energy of cavity formation
and that this free energy is determined only by the
temperature, the particle diameter and the number
density. It has also been pointed out [24.44] in the
scaled particle method that the volume available
to the solvent molecular centers is the same before
and after the introduction of the cavity: this is of
course identical to the situation in the present
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isochoric deformation method. In both cases then,
the entropy change accompanying cavity forma-
tion is determined only by the restructuring of
solvent around the cavity [24.44). Thus. if applica-
tions of the present (constant v,T') methods are
confined (0 number densities appropnate to the
liquids near 1 atm, thermodynamic conclusions
will be the same as in constant p.T methods.
Finally we mention that. although pe work is
rigorously zero in both the k-process of section 2
and the A-process of section 4. the reasons are
different in the two cases. In the x-process, no pr
work is done because there is no displacement of
external constraints; in the A-process. for any
increase dA in cavity radius. the pr work done on
the system at the inner surface (radius A) is ex-
actly cancelled by the pr work done by the system
at the outer surface (radius 7,(A)).
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